Characterization of the profile of cognitive impairment in older adults in Mexico
DOI:
https://doi.org/10.63688/xmazzj63Keywords:
Dementia, Latent Classes, ENASEMAbstract
The document analyzes cognitive impairment and dementia in people over 50 in Mexico, using the 2018 National Survey on Health and Aging (ENASEM). The Latent Class Analysis (LCA) method was applied to classify the population into five profiles according to the prevalence of chronic diseases, socioeconomic status, and education level, among other characteristics, finding that those with lower socioeconomic and educational levels have higher prevalences of cognitive impairment and dementia. An overall prevalence of 5.6% was identified for cognitive impairment and 3.0% for dementia. However, significant differences in prevalence were found according to age and sex related to the influence of social and economic factors. Profile 2 was identified as having the greatest impairment, characterized by low socioeconomic and educational levels and located in rural areas where the prevalence of nonfunctional cognitive impairment and dementia reached levels of 14.4% (in both cases). The study highlights the importance of the ACL for identifying patterns and conditions that could influence cognitive impairment, although it warns of the difficulty of establishing direct causal relationships. It concludes that specific theoretical and statistical models should be developed to achieve a better understanding of the effect of the variables analyzed and to define intervention strategies related to cognitive health.
References
Ansart, M., Epelbaum, S., Bassignana, G., Bône, A., Bottani, S., Cattai, T., ... & Thibeau-Sutre, E. (2020). Predicting the Progression of Mild Cognitive Impairment Using Machine Learning: A Systematic, Quantitative and Critical Review. Medical Image Analysis, 101848. DOI: https://doi.org/10.1101/2020.09.01.20185959
Bartholomew, D. J., Steele, F., & Moustaki, I. (2008). Analysis of multivariate social science data. CRC press. DOI: https://doi.org/10.1201/b15114
Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and applications. Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511811241
Di Lorito, C., Bosco, A., Booth, V., Goldberg, S., Harwood, R. H., & Van der Wardt, V. (2020). Adherence to exercise interventions in older people with mild cognitive impairment and dementia: A systematic review and meta-analysis. Preventive Medicine Reports, 19. DOI: https://doi.org/10.1016/j.pmedr.2020.101139
Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., ... & Cummings, J. L. (2014). Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. The Lancet Neurology, 13(6), 614-629. DOI: https://doi.org/10.1016/S1474-4422(14)70090-0
Garrett, E. S., & Zeger, S. L. (2000). Latent class model diagnosis. Biometrics, 56(4), 1055-1067. DOI: https://doi.org/10.1111/j.0006-341X.2000.01055.x
Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press.
Grossman, Michael (1972). On the concept of health capital and the demand for health. Journal of Political economy, 80(2), 223-255. DOI: https://doi.org/10.1086/259880
Grossman, M. (2017). The demand for health: a theoretical and empirical investigation. Columbia University Press. DOI: https://doi.org/10.7312/gros17900
INEGI (2020). ENASEM; Diseño Conceptual. Instituto Nacional de Estadística, Geografía e Informática. Primera Edición.
Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778. DOI: https://doi.org/10.1093/biomet/88.3.767
Manrique-Espinoza, B., Salinas-Rodríguez, A., Moreno-Tamayo, K. M., Acosta-Castillo, I., Sosa-Ortiz, A. L., Gutiérrez-Robledo, L. M., & Téllez-Rojo, M. M. (2013). Condiciones de salud y estado funcional de los adultos mayores en México. Salud pública de México, 55, S323-S331. DOI: https://doi.org/10.21149/spm.v55s2.5131
MHAS (2020), “The Mexican Health and Aging Study (MHAS/ENASEM): Master File Follow-up 2001, 2003, 2012, 2015 and 2018. Version 1, July 2020.” Retrieved from www.MHASweb.org on (date).
Miu, J., Negin, J., Salinas-Rodriguez, A., Manrique-Espinoza, B., Sosa-Ortiz, A. L., Cumming, R., & Kowal, P. (2016). Factors associated with cognitive function in older adults in Mexico. Global health action, 9(1), 30747. DOI: https://doi.org/10.3402/gha.v9.30747
Monroy, L., Vidal, R., & Saade, A. (2009). Análisis de clases latentes: una técnica para detectar heterogeneidad en poblaciones [cuaderno técnico 2.]. México: Centro Nacional de Evaluación para la Educación Superior.
Peña, D. (2002). Análisis de datos multivariantes (Vol. 24). Madrid: McGraw-hill.
Prince, M. J., De Rodriguez, J. L., Noriega, L., Lopez, A., Acosta, D., Albanese, E., ... & Uwakwa, R. (2008). The 10/66 Dementia Research Group's fully operationalised DSM-IV dementia computerized diagnostic algorithm, compared with the 10/66 dementia algorithm and a clinician diagnosis: a population validation study. BMC public health, 8(1), 1-12. DOI: https://doi.org/10.1186/1471-2458-8-219
Prince, M., Acosta, D., Ferri, C. P., Guerra, M., Huang, Y., Rodriguez, J. J. L., ... & Liu, Z. (2012). Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study. The Lancet, 380(9836), 50-58. DOI: https://doi.org/10.1016/S0140-6736(12)60399-7
Scott Long, J. (1997). Regression models for categorical and limited dependent variables. Advanced quantitative techniques in the social sciences, 7.
Wedel, M., & Kamakura, W. A. (2012). Market segmentation: Conceptual and methodological foundations (Vol. 8). Springer Science & Business Media.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Omar Stabridis Arana, Gerardo Nuñez Medina (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los artículos publicados en la revista se distribuyen bajo la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a terceros descargar, copiar, distribuir, adaptar y reutilizar una obra, incluso con fines comerciales, siempre que se otorgue el crédito adecuado al autor original.